HEATER ELEMENT REPLACEMENT INSTRUCTIONS

CAUTION - After removing the defective element, assure that all inner and outer sealing surfaces are clean and free of debris prior to installing the new o-rings and element or leaks may occur.

A

* WARNING: Hold the Bottom Hex (x) with a $1 / 4$ " open end wrench when tightening the Terminal Nut to prevent rotation and damage to the epoxy end seal.

$$
\begin{aligned}
& \text { PARTS INCLUDED } \\
& \text { (A) - 60-0022 - O-Ring (2ea) } \\
& \text { (B) } 01-0010-\text { Nut, } 1 / 2 " \times 20 \text { (2ea) } \\
& \text { (C) }-01-0035 \text { - Nut, K-Lock \#10-32 (2ea) }
\end{aligned}
$$

TORQUE SETTINGS
$3 / 4^{\prime \prime}$ Bulkhead Nuts $=15 \mathrm{ft} / \mathrm{lbs}$
$3 / 8^{\prime \prime}$ Terminal Nuts $=20 \mathrm{in} / \mathrm{lbs}$
85-0035 Rev 06 01/14

HEATER ELEMENT REPLACEMENT INSTRUCTIONS

CAUTION - After removing the defective element, assure that all inner and outer sealing surfaces are clean and free of debris prior to installing the new o-rings and element or leaks may occur.

A

* WARNING: Hold the Bottom Hex (x) with a $1 / 4$ " open end wrench when tightening the Terminal Nut to prevent rotation and damage to the epoxy end seal.

TORQUE SETTINGS
3/4" Bulkhead Nuts $=15 \mathrm{ft} / \mathrm{lbs}$
$3 / 8$ " Terminal Nuts $=20 \mathrm{in} / \mathrm{lbs}$

TECHNICAL FACTS

Amperage \& Ohms Measurements				
Kilowatts	Watts	Voltage	Amps	Ohms
11 (dual)	11000	240	45.8	5.24
11 (single)	11000	240	43.6	5.5
8	8000	240	33.3	7.21
5.5	5500	240	22.9	10.4
4.5	4500	240	18.75	12.8
4	4000	240	16.7	14.4
3	3000	240	12.5	19.2
2.5	2500	240	10.4	23.04
2	2000	240	8.3	28.8
1.5	1500	120	12.5	9.6
1	1000	120	8.3	14.4
0.65	650	120	5.4	22.15

Ohm's Law

Ohm's Law is made from 3 mathematical equations that shows the relationship between electric voltage, current and resistance.
$\mathbf{V}=\mathbf{I} \times \mathbf{R}$ (Voltage = Current multiplied by Resistance) $\mathbf{R}=\mathbf{V} / \mathbf{I}$ (Resistance = Voltage divided by Current) $\mathbf{I}=\mathbf{V} / \mathbf{R}($ Current = Voltage divided by Resistance) Knowing any two of the values of a circuit, one can determine (calculate) the third, using Ohm's Law.

The Wheel:

Volts V (on top of the divided line)
Amps I (lower left below the divided line)
Resistance R (lower right below the divided line)
X represents the (multiply by sign)

Temperature Rise							
Based on Gallons and Heater Wattage TEMPERATURE RISE METHOD							
$V=$ Volume of water							
$\mathrm{kW}=$ Kilowatt rating of heater							
$\Delta \mathbf{T}=$ Temperature rise in ${ }^{\circ} \mathrm{F}$ Per Hour							
$\Delta \mathbf{T}=\frac{\mathrm{kW} \times 411}{\mathrm{~V}} \quad \begin{aligned} & \text { This formula is used to determine the temperature rise } \\ & \text { a kilowatt rating will achieve. } \end{aligned}$							
$\mathrm{kW}=\frac{\mathrm{V} \times 8.3 \times \Delta \mathbf{T}}{3413} \quad$ This formula is used to determine the kilowatt required to achieve a desired temperature rise.							
1.5kW	Gallons of Water	102	123	155	205	250	305
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per Hour*	6.0	5.0	4.0	3.0	2.5	2.0
5.5kW	Gallons of Water	113	126	151	205	281	375
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per Hour*	20.0	18.0	15.0	11.0	8.0	6.0
11kW	Gallons of Water	181	226	302	450	900	1120
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per Hour*	25.0	20.0	15.0	10.0	5.0	4.0
${ }^{*}$ Temperature rise as listed above does not account for heat loss - actual heat up times may vary.							
Fahrenheit and Celsius Conversions							
To convert Fahrenheit temperature into Celsius: - Begin by subtracting 32 from the Fahrenheit number - Divide the answer by 9 - Then multiply that answer by 5 To convert Celsius temperatures into Fahrenheit: - Begin by multiplying the Celsius temperature by 9 - Divide the answer by 5 - Now add 32							

TECHNICAL FACTS

Amperage \& Ohms Measurements				
Kilowatts	Watts	Voltage	Amps	Ohms
11(dual)	11000	240	45.8	5.24
11 (single)	11000	240	43.6	5.5
8	8000	240	33.3	7.21
5.5	5500	240	22.9	10.4
4.5	4500	240	18.75	12.8
4	4000	240	16.7	14.4
3	3000	240	12.5	19.2
2.5	2500	240	10.4	23.04
2	2000	240	8.3	28.8
1.5	1500	120	12.5	9.6
1	1000	120	8.3	14.4
0.65	650	120	5.4	22.15
Ohm's Law				
Ohm's Law is made from 3 mathematical equations that shows the relationship between electric voltage, current and resistance. V = I x R (Voltage = Current multiplied by Resistance) $\mathbf{R}=\mathrm{V} / \mathrm{I}$ (Resistance $=$ Voltage divided by Current) I = V / R (Current = Voltage divided by Resistance) Knowing any two of the values of a circuit, one can determine (calculate) the third, using Ohm's Law. The Wheel: Volts V (on top of the divided line) Amps I (lower left below the divided line) Resistance R (lower right below the divided line) X represents the (multiply by sign)				

Temperature Rise							
Based on Gallons and Heater Wattage TEMPERATURE RISE METHOD							
$\mathrm{V}=$ Volume of water							
$\mathrm{kW}=$ Kilowatt rating of heater							
$\Delta \mathbf{T}=$ Temperature rise in ${ }^{\circ} \mathrm{F}$ Per Hour							
$\Delta \mathbf{T}=\frac{\mathrm{kW} \times 411}{\mathrm{~V}} \quad \begin{aligned} & \text { This formula is used to determine the temperature rise } \\ & \text { a kilowatt rating will achieve. }\end{aligned}$							
$\mathrm{kW}=\frac{\mathrm{V} \times 8.3 \times \Delta \mathbf{T}}{3413} \quad \begin{aligned} & \text { This formula is used to determine the kilowatt required } \\ & \text { to achieve a desired temperature rise. }\end{aligned}$							
	Gallons of Wate	102	123	155	205	250	305
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per Ho	6.0	5.0	4.0	3.0	2.5	2.0
5.5kw	Gallons	113	126	151	205	281	375
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per Hour	20.0	18.0	15.0	11.0	8.0	6.0
	Gallons of	181	22	302	450	900	1120
	Water Temperature Rise in ${ }^{\circ} \mathrm{F}$ Per H	25.	20.	15.0	10.0	5.0	4.0
Temperature ise as listed above does not account for heat loss - actual heat up times may va							
Fahrenheit and Celsius Conversions							
To convert Fahrenheit temperature into Celsius: - Begin by subtracting 32 from the Fahrenheit number - Divide the answer by 9 - Then multiply that answer by 5 To convert Celsius temperatures into Fahrenheit: - Begin by multiplying the Celsius temperature by 9 - Divide the answer by 5 - Now add 32							

